
 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 1

Full Stack Development Syllabus

With Reach Node .js

Introduction to Full Stack Development

✓ Overview of Full Stack Development: What is Full Stack Development, roles of a full-

stack developer, importance of front-end and back-end technologies, and the

integration of both.

✓ Tech Stack Overview:

• Front-End: React.js (UI components, routing, state management)

• Back-End: Node.js (server-side logic, REST APIs, database interaction)

• Database: MongoDB (NoSQL) or PostgreSQL/MySQL (SQL)

• Version Control: Git, GitHub

Front-End Development with React.js

HTML5 & CSS3 Basics

✓ HTML5: Structure of a webpage, semantic tags, forms, and input elements

✓ CSS3: Styling techniques (layout, typography), Flexbox, Grid, Media Queries for

responsive design

✓ CSS Preprocessors: Sass or less for better organization and maintainability

JavaScript (ES6+)

✓ Fundamentals: Variables, data types, operators, control structures

✓ Functions and Objects: Functions, arrow functions, ES6 classes, objects, and arrays

✓ DOM Manipulation: Selecting elements, event handling, updating the DOM

✓ ES6 Features: Arrow functions, promises, async/await, DE-structuring, template

literals, spread/rest operators

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 2

React.js Essentials

✓ Introduction to React: What is React, component-based architecture

✓ JSX: Writing components using JSX, JSX syntax

✓ Components and Props: Creating functional and class components, passing data

through props

✓ State and Lifecycle: Managing state in components, component lifecycle methods, and

the useState and useEffect hooks

✓ React Router: Client-side routing for single-page applications (SPAs)

✓ Event Handling: Handling user inputs and actions in React components

✓ Forms and Validation: Handling form inputs, form validation in React

Advanced React Concepts

✓ Context API: Managing global state across components

✓ React Hooks: Custom hooks, useContext, useReducer, and performance optimization

✓ State Management: Introduction to Redux, connecting React to Redux for more

complex state management

✓ React Performance Optimization: Memoization (React.memo, useMemo), lazy loading,

and code splitting

Back-End Development with Node.js

Introduction to Node.js

✓ What is Node.js? Node.js fundamentals, non-blocking I/O, and asynchronous

programming model

✓ Setting up Node.js Environment: Installing Node.js, npm, and basic project structure

✓ Node.js Modules: Using built-in modules like fs, http, path, url, etc.

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 3

Express.js

✓ Introduction to Express: Setting up an Express server, middleware, and routing

✓ Routing: Defining API routes, handling GET, POST, PUT, DELETE requests

✓ Middleware: Using middleware for error handling, authentication, logging, etc.

✓ Template Engines: Using EJS or Pug to render views dynamically

APIs & RESTful Services

✓ REST API Basics: REST principles, HTTP methods (GET, POST, PUT, DELETE), and status

codes

✓ Creating RESTful APIs with Express: Setting up routes, controllers, and error handling

✓ Authentication and Authorization:

• User authentication with JWT (JSON Web Tokens)

• OAuth for third-party logins (Google, Facebook, etc.)

• Role-based access control (RBAC)

✓ CORS (Cross-Origin Resource Sharing): Handling cross-origin requests securely

Database Integration

Relational Databases (SQL)

✓ Introduction to SQL: Basics of SQL, SELECT, INSERT, UPDATE, DELETE queries

✓ Database Design: Normalization, relationships (one-to-many, many-to-many)

✓ PostgreSQL/MySQL: Installing and using PostgreSQL or MySQL with Node.js

✓ ORM (Object-Relational Mapping): Using Sequelize or Knex.js to interact with

databases via models

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 4

NoSQL Database (MongoDB)

✓ Introduction to NoSQL: Basics of NoSQL databases, document-oriented data

✓ MongoDB: Setting up MongoDB, collections, and documents

✓ Mongoose: Using Mongoose for schema definition and data validation in MongoDB

✓ CRUD Operations in MongoDB: Create, Read, Update, Delete operations with

Mongoose

Authentication & Authorization

User Authentication

✓ JWT (JSON Web Tokens): Securing API endpoints with JWT for user authentication

✓ Session-Based Authentication: Using sessions and cookies for managing login states

✓ OAuth Authentication: Implementing third-party login with Google, Facebook, or

GitHub

Authorization

✓ Role-Based Access Control (RBAC): Granting specific roles and permissions to users

✓ Secure Password Storage: Using bcrypt for hashing passwords and comparing them

securely

 SHINYTECH SOLUTIONS

 www.shinytech.in

Page 5

Testing and Debugging

Unit Testing

✓ Testing Frameworks: Introduction to Mocha, Chai, and Jest for unit testing Node.js

and React components

✓ Testing APIs: Writing tests for API endpoints, mock data, and error handling

Debugging

✓ Debugging Node.js: Using Node.js debugger and logging techniques

✓ Debugging React: React Developer Tools and browser debugging tools

Deployment

Deployment of React Application

✓ Building for Production: Using create-react-app to build a production-ready version of

the React app

✓ Deploying on Platforms: Deploying React applications on platforms like Netlify, Vercel,

or AWS

Deployment of Node.js Backend

✓ Production Setup: Setting up Node.js for production with tools like pm2, forever, or

Docker

✓ Server Deployment: Deploying back-end Node.js applications on cloud providers like

AWS, Heroku, or DigitalOcean

✓ Environment Variables: Managing sensitive information (API keys, database

credentials) using environment variables

